
5"I_ _ "IU

Efficacy of code optimizations on cache-based processors

Rob F. Van der Wijngaart

MRJ Technology Solutions

NASA Ames Research Center

MS T27A-1

Moffett Field, CA 94035

1 Introduction

The current common wisdom in the U.S. is that the powerful, cost-effective supercomputers

of tomorrow will be based on commodity (RISC) micro-processors with cache memories.

Already, most distributed systems in the world use such hardware as building blocks. This

shift away from vector supercomputers and towards cache-based systems has brought about a

change in programming paradigm, even when ignoring issues of parallelism. Vector machines

require inner-loop independence and regular, non-pathological memory strides (usually this

means: non-power-of-two strides) to allow efficient vectorization of array operations. Cache-

based systems require spatial and temporal locality of data, so that data once read from

main memory and stored ill high-speed cache memory is used optimally before being written

back to main memory (see Bailey '93 [1]). This means that the most cache-friendly array

operations are those that feature zero or unit stride, so that each unit of data read from main

memory (a cache line) contains information for the next iteration in the loop. Moreover,

loops ought to be 'fat', meaning that as many operations as possible are performed on cache

data--provided instruction caches do not overflow and enough registers are available. If

unit stride is not possible, for example because of some data dependency, then care must be

taken to avoid pathological strides, just as on vector computers. For cache-based systems

the issues are more complex, due to the effects of associativity and of non-unit block (cache

line) size (see Bailey '95 [2]). But there is more to the story. Most modern micro-processors

are superscalar, which means that they can issue several (arithmetic) instructions per clock

cycle, provided that there are enough independent instructions in the loop body. This is

another argument for providing fat loop bodies.

With these restrictions, it appears fairly straightforward to produce code that will run effi-

ciently on any cache-based system. It can be argued that although some of the important

computational algorithms employed at NASA Ames require different programming styles on

vector machines and cache-based machines, respectively, neither architecture class appeared

to be favored by particular algorithms in principle. Practice tells us that the situation is more

complicated. This report presents observations and some analysis of performance tuning for

cache-based systems. We point out several counterintuitive results that serve as a cautionary

reminder that memoryaccessesarenot the only factorsthat determineperformance,and
that within the classof cache-basedsystems,significantdifferencesexist.

2 Kernel code

The most important flow solverprogramin useat NASA Amesis OVERFLOW, basedon
an Alternating-Direction Implicit (ADI) algorithm describedby Beamand Warming [3].
The efficientdiagonalizedform of the algorithm, describedby Pulliam and Chaussee[4],
is the most commonlyusedsolver kernelof OVERFLOW. Its essenceis capturedin the
ScalarPenta-diagonal(SP) program, part of the suite of sourcecodesthat makeup the
NAS ParallelBenchmarks2 (NPB 2) [5]. SPconstitutesastresstest on the memorysystem
of the computer,sincethereare fairly fewoperationsper grid point to be executedin any
one loop of the code. The most critical part of the code is the line solver,which solves
independentsystemsof linear equationsassociatedwith grid lines. Sincethereare three
familiesof grid linesin three-dimensionalspace,therearealsothreedifferentsolverroutines
for the threeso-calledfactors.Weusethesethreeroutines,with the genericnamesx-loop,
y-loop, and z-loop, respectively,asexamplesof codesto be run on cache-basedsystems.
They aredescribedin Appendix A. Successivecumulativeoptimizationsattemptedin these
codes,indicatedby suffixes1through 5, areasfollows.

1. Baseline,which is nowcontainedin NPB 2.

. Eliminate temporaries for incremented indices, i.e. i+i, ±+2, j+l, j+2, k+l, k+2

instead of il, i2, jl, j2, kl, k2. This enables good compilers to do better register
allocation.

3. Unroll inner loops of fixed length (m=i,2,3). This reduces loop overhead and register
demand.

. Move the fourth index (m) of the arrays rhs, lhs to the first position. This improves

spatial data locality, since each iteration of the inner loop uses all three elements of

rhs and all five elements of lhs at each grid point.

. Unroll the first available loop (j for x-loop, i for y-loop and z-loop) to a level of

two. This increases the number of independent computations in the inner loop. Notice

the location of the assignment fac2 = 1. d0/lhs (3, i, j +1, k). It is moved to the front

of the inner loop, far ahead of the subsequent assignments that make use of fac2, to

improve possibilities for optimal scheduling by the compiler.

In the cases of y-loop and z-loop there are two more code variations possible that have to

do with the order of the loops. The previous optimizations all employ the so-called canonical

loop nest orderings for x-loop, y-loop and z-loop, namely running index k for the outer

loop, j for the middle loop, and ± for the inner loop. But it is most natural computationally

to finish a whole grid line in the inner loop before moving to the next grid line.

,

.

Use j and k as the running index for y-loop and z-loop, respectively, while keeping

the unrollings described in optimization 5. This causes large strides in the arrays,

which is generally bad. But, the benefit is that there is some overlap in subsequent

iterations, since there is a recursion in the grid line direction in the solver algorithm.

The running index for the middle loop in each of the two loop nests is always i.

Use the same natural loop order as in the previous optimization, but eliminate unrolling

optimization 5.

Each subroutine is executed for four grid sizes, i.e. 163 , 323 , 643 , and 803 . TO avoid bad strides

(see optimizations 6 and 7), all array' grid dimensions are padded by 1. Tests with different

paddings did not produce improvements on the architectures under consideration, and cache

simulations (see Section 5) indicate that no cache lines remain unused when padding is set

to 1. Moreover, when the m-index is moved into the first position, primeness of its size (3 for

rhs and 5 for lhs) effectively guarantees safe strides. An optimization that was attempted

but that is not reported quantitatively here concerns transposition of the arrays to align the

line solve direction with the second array index (following m). This technique, which can pay

off well when many operations are performed at each grid point, such as ill FFTs on large

grids, obtained very poor results for SP due to the sparseness of computations.

3 Machines

The machines investigated ill this report are mainly RISC processors: MIPS R5000, MIPS

R8000, MIPS R10000, DEC Alpha EV4, DEC Alpha EV5, IBM RS6000, Sun UltraSparc I.

The one CISC architecture is the Intel PentiumPro. A number of these processors are cur-

rently used in parallel platforms: MIPS R8000 in the SGI PowerChallenge Davinci cluster

at NASA Ames, MIPSR10000 in the SGI Origin2000 cluster at the University of Urbana

Champaign, DEC Alpha EV4 in the Cray TaD Cosmos system at the Jet Propulsion Labo-

ratory, DEC Alpha EV5 ill the Cray T3E machine at the National Energy Research Scientific

Computing Center in Berkeley, IBM RS6000 in the SP Wide Node Babbage system at NASA

Ames, and Sun UltraSparc I in the University of Berkeley Network of Workstations (NOW)

system.

The PentiumPro is being considered for a new massively parallel system called Whitney,

currently under construction at NASA Ames. Machine specifics are summarized in Table

1. They reflect the alterations made to the processors to integrate them in their parallel

platforms. In particular, the DEC Alpha EV4 and EV5 modified by Cray Research lost

their off-chip second-level and third-level caches, respectively, for numerical processing. One

of the most important system parameters, the memory bandwidth, is not listed, because

vendor-provided data are generally inconclusive. It is assumed that memory bandwidth is

always an active constraint on processor performance.

On all machines we select the highest acceptable level of optimization for the Fortran com-

piler (generally -03). Native Fortran compilers are available for all platforms, except the

PentiumPro. On the latter system tile compiler from the Portland Group is used.

4 Measured performance results

Performances of the processors-and compilers--tested, in MFlop/s (millions of floating point

computations per second), are presented in Appendix B. They are obtained by running each

of the loop nests in Appendix A a number of times on each system, ignoring the first iteration

to eliminate start-up overhead, and determining the minimum of the execution times for the

remaining iterations to eliminate noise.

The results for each processor are shown in three different ways, as indicated in the schematic

in Figure 1. The first display (Figure a) scales the performance within each set of computa-

tions for a certain grid size and a certain factor (x, y, or z). Maximum performance relative

to the other optimization strategies for the same grid size and factor is indicated in black,

minimum in light gray. This type of display allows the comparison of a particular optimiza-

tion across all grid sizes and factors; for example, if row 3 is black for the y-factor for a

certain processor (as shown in Figure la), then unrolling of the m-loop, in conjunction with

optimizations 2, guarantees optimal performance of that y-factor. If rows 3 for the x-factor

and z-factor were black as well, then unrolling the m-loop would be a generally optimal

strategy for that processor.

The second display (Figure b) scales the performance within each set of computations for a

certain factor (x, y, or z). This allows the easy assessment of the influence of grid size (and

hence of array size) on performance. For example, if black blocks occur only in the left few

columns of figure b (as shown in Figure lb), then the processor's performance apparently

reduces when the problem grows too large to fit completely in the cache.

The third display (Figure c) scales the performance within the whole set of computations

for each processor. This facilitates the combined assessment of cache size and stride on the

performance. Factor x features the smallest stride, and z the largest, even when the loop

ordering is theoretically optimal (outer loop k, then j, and inner loop i). This may be borne

out by the performance results if the maximum performance is obtained for the x-factor, as

suggested in Figure lc.

Note that the absolute magnitudes of the performance numbers are the same for correspond-

ing cases in each set of three figures a, b and c; it is only the shading that differs. Some

Name

R5000

R8000

R10000

EV4

EV5

RS6000

PPro

Sparc

Table 1: Processor specifications summary

RAM

MBytes

64

4096

4096

8

8

128

128

1024

Ll-cache

KBytes

32i+32d

16i+16d

32i+32d

8i+8d

8i+8d

32i

8i+8d

16i+16d

L2-cache

KBytes

0

4096

4096

0

96

256

258/512
512

cache line

Bytes

32

512

128

32

32

256

32

64

associativity CP[

MH:

150

90

195

150

300

66

200

167

Peak

MFlop/s

300

360

390

300

600

267

200

334

4

interestingobservationscanbemade,basedon the performancefigures.

MIPS R5000. Figure 2a showsa markedimprovementfor unrolling the m-loopfor the
x-factor, and, to a lesser extent, for the y- and z-factors. Making m the first array index

gives a substantial improvement for the y-factor and also some for the x-factor, but reduces

performance for the z-factor. And, counterintuitively, the z-factor benefits most from the

natural, large-stride loop ordering, a_s opposed to the canonical ordering.

MIPS R8000. Figure 3a shows that unrolling the i-loops for the y- and z-factors greatly

deteriorates performance, hinting at a problem with the allocation of registers for the fattened

loop body. Figure 3b clearly demonstrates the reduced processor performance for large grids

that do not fit completely in cache (sizes 64 and 80). Apparently, the memory bandwidth

is not sufficient to fill the cache fast enough from main memory. Finally, Figure 3c reveals

that the generally most cache-friendly x-factor code performs more poorly than the y- and

z-factors. This may be caused by the interleaved structure of the cache.

MIPS R10000. Figure 4a shows a strong dependence of problem size on the best optimiza-

tion strategy. For small grids making m the first array index greatly improves performance,

but this optimization is completely counterproductive for large grid sizes. In either case, the

greatest relative performance improvement is obtained by the virtually trivial optimization

of unrolling the m-loop. Figure 4b again indicates a memory bandwidth problem. Unlike

for the MIPS R8000, the x-factor now exhibits the best performance again among all three

factors, as evidenced by Figure 4c.

IBM RS6000. Figure 5a shows, somewhat surprisingly, that elimination of the auxiliary

variables il and i2 in the x-factor is beneficial on the RS6000, whereas a similar program

change for the y- and z-factors has a negative effect. In addition, we notice that the best

performance for the x-factor is obtained for a partially unrolled j-loop, whereas optimal

performance for the y- and z-factors is achieved for without unrolling of the i-, j-, and k-

loops. Finally, moving the m-index proves positive for the x-, neutral for the y-, and negative

for the z-loop. From Figure 5[) we conclude that there is a relatively small effect of grid size

on performance, indicating that the memory bandwidth is sufficient to feed the cache.

INTEL PENTIUMPRO 200 MHz. Figure 6a demonstrates that there is great sensitivity to

problem size with respect to the optimizations of the z-factor. But more importantly, Figure

6c shows that, with proper tuning, a performance of about 20 Mflops/s can be maintained

for a nontrivial floating point computation on this processor. This places the PentiumPro

squarely in the scientific workstation performance range.

DEC ALPHA EV4. Evidently, the x-factor performance improves through the unrolling of

the m-loop, whereas y- and z-factor performances deteriorate under the same code change,

as evidenced by Figure 7a. It also shows, in contrast with, for example, the RS6000, that

the best performance is obtained for a partially unrolled j-loop for the x-factor, but for

completely rolled up i-loops for the y- and z-factors. We also observe in Figure 7c that the

best results overall are obtained for the x-factor with m as the first array index, which may

be explained by the small cache of the machine--as modified by Cray Research--and the

(perceived) good data locality of this code variation.

DEC ALPHA EV5. For this DEC chip with a larger (secondary) cache the performance

5

of the y-factor degrades significantly when switching to the natural loop order, whereas for

the z-factor the effect is mixed. The largest performance improvement for all factors comes

from moving the m-index to the first array position, with unrolling the i- or j-loops having

little or no positive effect, as follows from Figure 8a. As for the EV4, the EV5 again shows

best overall behavior for the x-factor with m as the first array index (Figure 8c).

SUN ULTRASPARC I. From the fairly smooth distribution of performances across columns in

Figure 9a we deduce that the UltraSparc is not very sensitive to code optimizations by the

user, except for the very smallest grid size that fits entirely in the cache. Also notice that

whereas unrolling the /-loop did not help improve the performance of the x-factor, it was

necessary, combined with natural loop ordering, for best performance of the y- and z-loops.

A quick glance at Figure 9b shows that performance degrades drastically as soon as the

problem no longer fits entirely in cache, again pointing to a lack of memory bandwidth.

There are many ways in which the information in Figures 2a through 9a can be summarized.

We choose a simple one for Table 2. For each processor we count the number of grid sizes

for which a particular optimization technique is superior over all others. The sum of these

numbers over all processors is listed as total. The number of processors for which each

particular optimization is optimal for all grid sizes is listed as unanimous.

Name

R5000

R8000

R10000

RS6000

PentiumPro

DEC EV4

DEC EV5

UltraSparc

total

unanimous

Table 2: Summary of processor performance

x-factor y-factor z-factor

optimizations optimizations optimizations

2 3

0 0 0

0 0 4

0 0 2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 6

0 0 1

4 5 1 2

0 4 0 0

0 0 0 0

1 1 0 0

0 4 0 0

4 0 0 0

4 0 0 0

4 0 0 0

4 0 0 0

17 9 0 0

4 2 0 0

3 4 5 6

0 0 3 1

2 0 0 0

2 0 0 2

0 0 0 0

0 4 0 0 0

0 0 0 4 0

0 0 4 0 0

0 0 4 0 0

4 4 11 7 6

0 1 2 1 1

7 1

0 0

2 0

0 0

4 0

0

0

0

0

0

0

2 3 4 5 6 7

0 0 0 0 4 0

0 2 0 0 0 2

0 2 0 0 2 0

0 0 0 0 1 3

0 0 0 0 0 4

0 0 0 0 4 0

0 0 0 2 0 2

1 0 0 0 3 0

1 4 0 2 14 11

0 0 0 0 2 1

Evidently, there is not a single optimization strategy that gives the best performance for

all grid sizes for all processors. But even if we restrict the attention to one processor at a

time, most still do not allow a single uniform optimization strategy. Only the PentiumPro

and the DEC Alpha EV4 chip show consistently best performance (within 1% accuracy) for

fixed strategies x-l, Y-l, z-7 and x-l, y-6, z-6, respectively. If we rule out unrolling the ±,

j, or k loops (y-5,6, z-5,6), then the generally most acceptable single optimization strategy

is: x-4, y-7, z-7, i.e. the canonical loop ordering, with large strides for the y- and z-factors,

and m as the first array index. We notice that the scatter in the optimal tuning strategies is

substantially larger for the y- and z-factors than for the x-factor.

5 Cache simulations

It follows from the results in the previous section that intuition is a poor guide to performance

tuning. More detailed knowledge and insight are needed to design a good optimization

strategy. In order to produce code with portable performance characteristics, we limit the

type of knowledge to enter into the investigation to relatively easily quantifiable parameters

on arbitrary systems. Specifically, we choose to simulate the cache behavior of the same

set of processors as before to understand better the observed computational results. The

model for the simple cache simulator is as follows. The highest-level cache is assumed to

constitute the memory bottleneck; its parameters are used for the simulator. In case of

set-associative caches a Least Recently Used (LRU) replacement policy of cache lines is

employed. No knowledge about the cache other than line length, number of lines, and

associativity, is incorporated; For example, the effects of cache memory interleaving, and

of sophisticated strategies such as early restart and requested word first, are not taken into

account. Moreover, we a_ssume a separate data cache, since unified caches require vastly more

information for simulation, including the assembler version of the code. We simply transform

the assignments in the source code by hand to calls to the cache simulation routines. Only

memory loads are modeled. The structure of the computational loops is such that writes

are always done to memory locations that are already in cache, which means that no cache

lines need to be flushed to accommodate write operations. We ignore the effects of writing

through the cache to main memory. This is a potentially serious simplification. Depending

on the buffering strategy and the implementation of the cache controller, substantial stalling

may be incurred due to write operations.

Results of the simulations are presented in Appendix C. Each figure shows the percentage

of memory accesses (fetches) that cause cache misses for the optimizations described in

Appendix A (all code fragments exhibit the same total number of array references). Tallying

cache hits and misses starts after each loop nest has been executed once. This fills the cache

with (potentially) useful data beforehand, which is equivalent to the preconditioning in the

actual performance measurements described in Section 4. Note that optimization strategies

x-2, x-3, y-2, y-3, z-2 and z-3 are not displayed, since these feature exactly the same memory

access patterns as x-l, y-1 and z-l, respectively. Shading is applied in the same fashion as

in Figures a of Appendix B. The darker the shading, the fewer cache misses. Since we expect

the percentage of cache misses to be smaller for better performing code fragments, we call

this relation between the two a positive correlation.

MIPS R5000. Figure 10 exhibits a positive correlation between performance and cache

misses for the x- and z-factors, but a (mostly) negative one for y. We also notice that

there is a large difference in the performance of optimizations x-1 through x-3, although

the memory reference patterns are identical. Finally, we observe that the number of cache

misses for the z-factor is slashed in three--somewhat unexpectedly--by using the natural

loop ordering.

MIPS RS000. Figure 11 features a very small miss rate (less than 1%), and virtually no

correlation between performance and cache misses.

MIPS R10000. Again there is very poor correlation between processor performance and

missrate (Figure 12), and in the caseof a grid sizeof 323points the correlationis even
negative.

IBM RS6000. As in the caseof the MIPS R5000,the numberof cachemissesfor the
z-factor is reduced significantly by reverting to the natural loop order for large grids. Figure

13 indicates a fair correlation between performance and cache misses overall.

INTEL PENTIUMPRO 200 MHz. Although there is a clear positive correlation between cache

misses and performance for the x-factor, Figure 14 reveals a negative and mixed correlation

for the y- and z-factors, respectively. And again, natural loop ordering benefits the memory

access pattern of the z-factor.

DEC ALPHA EV4. Figure 15 confirms a positive correlation between cache misses and

performance for the z-factor, and negative and mixed correlations for x and y. It is of some

interest to note the erratic simulated cache behavior for the y-factor, with y-7, y-l, y-7 and

y-6 being the optimal strategies for grid sizes 163, 323, 643 and 803, respectively.

DEC ALPHA EV5. Figure 16 points out that reductions of cache misses by up to a factor

of 3 for the larger grids of the z-factor by switching to the natural loop ordering has no effect

or no positive effect on the performance. The y-factor shows widely varying performance

figures for identical numbers of cache misses.

SUN ULTRASPARC I. Performance of the UltraSparc for small grids (163) varies significantly,

especially for the x-factor, although the problem fits entirely in the cache, and no misses

occur. For larger grids the number of cache misses varies widely for the z-factor, with little

difference in processor performance.

Evidently, the simulated cache behavior for the processors studied correlates poorly with

the actually observed performance. It can be argued that this is due to the limitations of

the simulator, and that better correlations can be obtained by incorporating more detailed

characteristics of the particular machines. But since we are interested in producing portable

code, introducing even more information into the program construction will make this task

virtually impossible. We also notice that there is significant--and nontrivial--dependence

of the processor performance on the problem size, which is generally not known at compile

time. This makes the task of writing portable codes even harder. Moreover, the cache miss

rate of the simple piece of code investigated in this paper is a complex function of loop

organization, problem size, and cache structure, even if only very few parameters are used

to describe the cache.

6 Conclusions

We conclude that tuning codes for high performance on commercial cache-based processors

available today is a process that requires so much knowledge and information about the

entire configuration of user program, problem parameters, system software, and hardware

organization, that it is practically impossible to produce 'good cache code'. By this we mean

that it is not possible to tell whether a piece of numerical software will perform well by

using textual inspection and a few high-level parameters of the system under consideration;

General optimization strategies designed to take advantage of cache do not alone yield high

performance.Other factors,suchassoftwarepipelining,needto beconsideredaswell when
designingefficientcodes,but this will hamperportability of codesbetweenarchitectures.

Finally, it shouldbe noted that extremecaremust be taken to extend the optimization
resultsobtainedfrom the loops in Appendix A to entire application programs in case data

lay-outs are changed. For example, it may appear natural to move the m-index to the front

of the rhs and lhs arrays to increase cache data reuse. But for loops in which only, say, the

first element of rhs is used, performance may suffer, due to 'gaps' ill the array.

References

[1] D.H. Bailey, RISC Microprocessors and Scientific Computing, Proc. Supercomputing

'93, IEEE Computer Society, 1993, pp. 645-654.

[2] D.H. Bailey, Unfavorable Strides in Cache Memory Systems, Scientific Programming,

vol. 4 (1995), pp. 53-58

[3] R.M. Beam, R.F. Warming, An Implicit Factored Scheme for the Incompressible Navier-

Stokes Equation.% AIAA Journal, vol. 16 (1978), pp. 393-401

[4] T.H. Pulliam, D.S. Chaussee, A diagonal form of an implicit approximate factorization

algorithm, Journal of Computational Physics, Vol. 29, p. 1037, 1975

[5] D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart,, A. Woo, M. Yarrow,

The NAS Parallel Benchmarks 2.0, NAS Technical Report NAS-95-020, NASA Ames

Research Center, Moffett Field, CA, 1995

Appendix A: Codes

Below follow the source listings of the SP solver fragments used in the performance tests;

only the forward elimination parts of the penta-diagonal line solvers are used. Diagonal-

ization makes it possible to compute three solution values (rhs (.. ,re=l,3)) per grid point

simultaneously from a single penta-diagonal matrix (lhs). For each of the three factors to

be inverted in the ADI scheme (corresponding to the x-, y-, and z-directions), the same opti-

mizations are performed for corresponding suffixes. For example, x-3, y-3 and z-3 all unroll

inner loops of length three, x-l, y-1 and z-1 are the actual code fragments used in NPB 2.

Here we only show x-1 through x-5, y-6, and y-7. The other code fragments are easily in-

ferred. Italic typeface is used to indicate which parts of the code fragments are affected by the

optimizations. The dimensions of the arrays are rhs(nx,ny,nz,3) and lhs(nx,ny,nz,5),

respectively, when m is the last index, and rhs (3,nx,ny,nz) and lhs(5,nx,ny,nz), respec-

tively, when m is the first index.

x-I:NPB 2.2 code

do k = i, nz

do j = I, ny

do i = I, nx-2

il=i + 1

i2=i +2

facl = 1.d0/lhs(i,j,k,3)

lhs(i,j,k,4) = facl*lhs(i,j,k,4)

lhs(i,j,k,5) = facl*lhs(i,j,k,5)

do m = 1, 3

rhs(i,j,k,m) = facl*rhs(i,j,k,m)

end do

lhs(il,j,k,3) = lhs(il,j,k,3) - lhs(il,j,k,2)*lhs(i,j,k,4)

lhs(il,j,k,4) = lhs(il,j,k,4) - lhs(il,j,k,2)*lhs(i,j,k,5)

do m = i, 3

rhs(il,j,k,m) = rhs(il,3,k,m) - lhs(il,j,k,2)*rhs(i,j,k,m)

end do

lhs(i2,j,k,2) = lhs(i2,j,k,2) - lhs(i2,j,k,l)*lhs(i,j,k,4)

lhs(i2,j,k,3) = lhs(i2,j,k,3) - lhs(i2,j,k,l)*lhs(i,j,k,5)

do m = i, 3

rhs(i2,j,k,m) = rhs(i2,j,k,m) - lhs(i2,j,k,1)*rhs(i,j,k,m)

end do

end do

end do

end do

x-2: do not use auxiliary variables/or incremented indices

do k = I, nz

do j = I, ny

do i = I, nx-2

facl = l.dO/lhs(i,j,k,3)

]0

lhs(i,j ,k,4) = faci*lhs(i,j,k,4)

lhs(i,j ,k,5) = faci*lhs(i, j ,k,5)

do m= i, 3

rhs(i,j,k,m) = facl*rhs(i,j,k,m)

end do

lhs(i+l,j,k,3) = lhs(i+/,j,k,3) - lhs(i+l,j,k,2)*lhs(i,j,k,4)

lhs(i+l,j,k,4) = lhs(i+l,j,k,4) - lhs(i+l,j,k,2)*lhs(i,j,k,5)

do m= i, 3

rhs(i+1,j,k,m) = rhs(i+1,j,k,m) - lhs(i+l,j,k,2)*rhs(i,j,k,m)

end do

lhs(i+2,j,k,2) = lhs(i+2,j,k,2) - lhs(i+2,j,k,l)*lhs(i,j,k,4)

lhs(i+2,j,k,3) = lhs(/÷2,j,k,3) - lhs(i+2,j,k,l)*lhs(i,j,k,5)

do m = i, 3

rhs(i+2,j,k,m) = rhs(i+2,j,k,m) - lhs(/+2,j,k,l)*rhs(i,j,k,m)

end do

end do

end do

end do

x-3: unroll small inner loops of length 3

do k = i, nz

do j = l, ny

do i = 1, nx-2

facl =

lhs(i,j ,k,4) =

lhs(i,j ,k,5) =

rhsS,j,k ,1) = facl

rhsS,j,k,2) = facl

rhs(i,j,k,3) =/acl

lhs(i+l,3,k,3) =

lhs(i+l,j ,k,4)

rhs(i+ 1,j, k, I) =

rhs(i+ l,j,k,2) =

rhsS+ l,j,k,3) =

lhs (i+2, j ,k,2)

lhs (i+2, j ,k,3)

rhs(i+2,j,k,1) =

rhs(i+e,j,k,2) =

rhs(i+2,j,k,3) =

end do

end do

end do

i.dO/lhs(i,j ,k,3)

facl*lhs(i,j,k,4)

fac l*lhs (i, j, k, 5)

_rhs(i,j,k,1)

*rhs(i,j,k,2)

_'rhs(i,j,k,3)

lhs(i+l,j,k,3) - lhs(i+l,j,k,2)*lhs(i,j,k,4)

= lhs(i+l,j,k,4) - lhs(i+l,j,k,2)*lhs(i,j,k,5)

rhs (i+ 1,j, k, 1) - lhs (i + 1,j, k, 2) *rhs (i,j, k, 1)

rhs(i+ l,j,k,2) -lhs(i+l,j,k,2)*rhs(i,j,k,2)

rhs(i+ l,j,k,3) -lhs(i+l,j,k,2)*rhs(i,j,k,3)

= lhs(i+2,j,k,2) - lhs(i+2,j,k,i)*lhs(i,j,k,4)

= lhs(i+2,j,k,3) - lhs(i+2,j,k,1)*lhs(i,j,k,5)

rhs (i + 2,j, k, 1) - lhs (i + 2,j, k, 1) *rhs (i,j, k, 1)

rhs(i + 2,j,k,2) - lhsS + 2,j,k, 1) *rhs(i,j,k,2)

rhsS+2,j,k , 3) - lhs(i+2,j,k, 1) *rhsS,j, k, 3)

x-4: move last index of rhs and lhs to the front

do k = 1, nz

do j = 1, ny
do i = 1, nx-2

II

facl

lhs(_,i,j,k)

lhs(5,i,j,k) =

rhs(l,i,j,k) =

rhs(2,i,j,k) =

rhs($,i,j,k) =

lhs(3,i+l,j,k) =

lhs(_,i+i,j,k) =

rhs(l,i+i,j,k) =

rhs(2,i+l,j,k) =

rhs(3,i+l,j,k) =

lhs(g,i+2,j,k) =

lhs(3,i+2,j,k) =

rhs(l,i+2,j,k) =

rhs(2,i+2,j,k) =

rhs(3,i+2,j,k) =

end do

end do

= l.dO/lhs(3,i,j,k)

= facl*lhs(_,i,j,k)

f&cl*lhs (5,i,3 ,k)

facl*rhs(l,i,j ,k)

facl*rhs(2,i,j,k)

facl*rhs(3,i,j,k)

lhs(3, i+l,j,k) -

lhs(_,i+l,j k) -

rhs(l,i+l,jk) -

rhs(2,i+l,j_k) -

rhs(3, i+1,j k)

lhs(2,i+2,j k)

lhs(3,i+2,j k)

rhs(l,i+2,j k)

rhs(2,i+2,j,k)

rhs(3,i+2,j_k) -

end do

lhs(2,i+l,j,k)*lhs(_,i,j

lhs(g,i+l,j,k)*lhs(5, i,j

lhs(2,i+l,j,k)*rhs(l,i,j

lhs(2,i+l,j,k)*rhs(2,i,j

- lhs(_,i+l,j,k)*rhs(3,i,j

- lhs(l,i+2,j,k)*lhs(_,i,j

- lhs(l,i+2,j,k)*lhs($,i,j

- lhs(l,i+2,j,k)*rhs(l,i,j

- lhs(l,i+2,j,k)*rhs(2, i,j

k)

k)

k)

k)

k)

k)

k)

k)

k)

lhs(l,i+2,j,k)_rhs(3, i,j,k)

x-5: unroll j-loop to a level of 2

do k = I, nz

do j = I, ny, 2

do i = I, nx-2

facl

fac2

lhs(4,i,j,k)

lhs(5,i,j,k)

rhs(l,i,j,k)

rhs(2,i,j,k)

rhs(3,i,],k)

lhs(3,i+l,j.k)

lhs(4,i+l,j k)

rhs(l,i+l,j k)

rhs(2,i+l,j k)

rhs(3,i+l,j k)

lhs(2,i+2,j k)

lhs(3,i+2,j k)

rhs(l,i+2,j k)

rhs(2,i+2,j k)

rhs(3,i+2,j k)

lhs(4,i,j+1,k)

lhs(5,i,j+1,k)

rhs(l,i,j+1,k)

rhs (2, i ,j+ I ,k)

rhs(3,i,j+1,k)

lhs(3,i+ l ,j+1,k)

l.dO/lhs(3,i,j,k)

i.dO/lhs(3,i,j+l,k)

faci*lhs(4,i,j,k)

faci*lhs(5,i,j,k)

facl*rhs(l,i,j,k)

facl*rhs(2,i,j,k)

facl*rhs(3,i,j,k)

lhs(3,i+l,j,k) - lhs(2,i+l,j,k)*lhs(4,i,j,k)

lhs(4,i+l,j,k) - lhs(2,i+l,j,k)*lhs(5,i,j,k)

rhs(l,i+l,j,k) - lhs(2,i+l,j,k)*rhs(l,i,3,k)

rhs(2,i+l,j k) - lhs(2,i+l,j,k)*rhs(2,i,j,k)

rhs(3,i+l,j k) - lhs(2,i+l,j,k)*rhs(3,i,j,k)

lhs(2,i+2,j k) - lhs(l,i+2,j,k)*lhs(4,i,j,k)

lhs(3,i+2,j k) - lhs(l,i+2,j,k)*lhs(5,i,j,k)

rhs(l,i+2,j k) - lhs(l,i+2,j,k)*rhs(l,i,j,k)

rhs(2,i+2,j k) - lhs(l,i+2,j,k)*rhs(2,i,j,k)

rhs(3,i+2,j k) - lhs(l,i+2,j,k)*rhs(3,i,j,k)

fac2*lhs(4,i,j+1,k)

fac2*lhs(5,i,j+1,k)

fac2*rhs(l,i,j÷l,k)

fac2*rhs(2,i,j+l,k)

fac2*rhs(S,i,j+1,k)

lhs(3,i+l,j+l,k) - lhs(2,i+l,j÷1,k)*lhs(4,i,j÷1,k)

12

lhs (4, i+l ,j+l

rhs (1, i+l ,j+l

rhs (2,i+1 ,j+ 1

rhs (3 ,i + l ,j+ l

lhs (2, i+2,j+l

lhs (3, i+2,j+l

rhs(1,i+2,j+l

rhs(2,i+2,j+ l

rhs (3, i+2,j+l

end do

end do

end do

k)=

k)=

k)=

k)=

k)=

k)=

k)=

k)=

k)=

lhs (4,i+1 ,j+l,k)

rhs(1,i+l,j+l,k)

rhs (2, i+l ,j+l, k)

rhs (3, i+l ,j+l, k)

lhs(2,i+2,j+ l,k)

lhs (3, i+2 ,j+ 1, k)

rhs(1 ,i+2 ,j+l ,k)

rhs (2, i+2, j+ 1, k)

rhs(3,i+2,j+ l,k)

y-6: canonical loop order, i-loop unrolled to level 2

do k = 1, nz

do i = 1, nx, 2

do j = 1, ny-2

facl

fac2

lhs (4

lhs (5

rhs (1

rhs (2

rhs (3

lhs (3

lhs (4

rhs (1

rhs (2

rhs (3

lhs (2

lhs (3

rhs (1

rhs (2

rhs (3

lhs (4

lhs (5

rhs (I

rhs (2

rhs (3

,i,j ,k) =

,i,j ,k) =

,i,j ,k) =

,i,j ,k) =

,i,j ,k) =

,i,j+l,k) =

,i j+l,k) =

,i j+l,k) =

,i j+l,k) =

,i j+l,k) =

,i j+2,k) =

,i j+2,k) =

,i j+2,k) =

,i j+2,k) =

,i j+2,k) =

,i+l,j ,k) =

,i÷l,j ,k) =

,i+l,j ,k) =

,i+l,j ,k) =

,i+l,j ,k) =

lhs(3,i+ l , j+l ,k) =

lhs(4,i+l,j+l,k) =

rhs(1,i+l,j+l,k) =

rhs(2,i+l,j+l,k) =

rhs(3,i+ l , j+l ,k) =

lhs(2,i+ l , j+2,k) =

lhs(3,i+ l , j+2,k) =

- lhs(2,i+l,j+l,k)*lhs(5,i,j+l,k)

- lhs(2,i+i,j+l,k)*rhs(1,i,j+l,k)

- lhs (2, i+l ,j+l,k) *rhs (2, i ,j+l ,k)

- lhs(2,i+l,j+l,k)*rhs(3,i,j+l,k)

- lhs(1,i+2,j÷l,k)*lhs(4,i,j+l,k)

- lhs(1,i+2,j+l,k)*lhs(5,i,j÷l,k)

- lhs(1,i+2,j+l,k)*rhs(1,i,j+l,k)

- lhs(1,i+2,j+l,k)*rhs(2,i,j÷l,k)

- lhs(1,i+2,j÷l,k)*rhs(3,i,j+l,k)

1.dO/lhs(3,i,j,k)

1.dO/lhs(3,i+l,j,k)

facl*lhs(4,i,j,k)

facl*lhs(5,i,j,k)

facl*rhs(1,i,j,k)

facl*rhs(2,i,j,k)

facl*rhs(3,i,j,k)

lhs(3,i,j+l,k) - lhs(2,i

lhs(4,i,j+l,k) - lhs(2,i

rhs(l,i,j+l,k) - lhs(2,i

rhs(2,i,j+l,k) - lhs(2,i

rhs(3,i,j+l,k) - lhs(2,i

lhs(2,i,j+2,k) - lhs(l,i

lhs(3,i,j+2,k) - lhs(l,i

rhs(l,i,j+2,k) - lhs(l,i

rhs(2,i,j+2,k) - lhs(l,i

rhs(3,i,j+2,k) - lhs(l,i

fac2*lhs(4,i+l,j,k)

fac2*lhs(5,i+l,j,k)

fac2*rhs(l,i÷l,j,k)

fac2*rhs(2,i÷l,j,k)

fac2*rhs(3,i÷l,3,k)

lhs(3,i+l,j+i,k) - lhs(2,i+l

lhs(4,i+l,j+l,k) - lhs(2,i+l

rhs(1,i+l,j+l,k) - lhs(2,i+l

rhs(2,i+l,j+l,k) - lhs(2,i+l

rhs(3,i+l,j+l,k) - lhs(2,i+l

lhs(2,i+l,j+2,k) - lhs(1,i+l

lhs(3,i+l,j+2,k) - lhs(1,i+l

,j+l,k)*lhs(4,i,j

,j+l,k)*lhs(5,i,j

,j+l,k)*rhs(1,i,j

,j+l,k)*rhs(2,i,j

,j+l,k)*rhs(3,i,j

,j+2,k)*lhs(4,i,j

,j+2,k)*lhs(5,i,j

,j+2,k)*rhs(l,i,j

,j+2,k)*rhs(2,i,3

,j+2,k)*rhs(3,i,j

j+l,k)*lhs(4

j+l,k)*lhs(5

j+l,k)*rhs(1

j+l,k)*rhs(2

j+l,k)*rhs(3

j+2,k)*lhs(4

j+2,k)*lhs(5

k)

k)

k)

k)

k)

k)

k)

k)

k)

k)

i+l,j ,k)

i+l,j ,k)

i÷I,j k)

i+1 ,j ,k)

i+1 ,j ,k)

i+l,j ,k)

i+l,j ,k)

13

rhs(1,i+l,j+2,k)

rhs(2,i+l,j+2,k)

rhs(3,i+l,j+2,k)

= rhs(1,i+l,j+2,k)

= rhs(2,i+l,j+2,k)

= rhs(3,i+l,j+2,k)

- lhs(1,i÷l,j+2,k)*rhs(1,i+l,j,k)

- lhs(1,i+l,j+2,k)*rhs(2,i÷l,j,k)

- lhs(1,i+l,j+2,k)*rhs(3,i+l,j,k)

end do

end do

end do

y-_ canonicalloop order, rolle_up i-loop

do k = 1, nz

do i = 1, nx

do j = 1, ny-2

facl

lhs(4,i,j,k)

lhs(5,i,j,k)

rhs(1,i,j,k)

rhs(2,i,j,k)

rhs(3,i,j,k)

lhs(3,i,j+l k) =

lhs(4,i,j+l k) =

rhs(l,i,j+l,k) =

rhs(2,i,j+l,k) =

rhs(3,i,j+Ik) =

lhs(2,i,j+2,k) =

lhs(3,i,j+2_k) =

rhs(l,i,j+2_k) =

rhs(2,i,j+2 k) =

rhs(3,i,j+2,k) =

= 1.dO/lhs(3,i,j

= facl*lhs(4,i,j

= facl*lhs(5,i,j

= facl*rhs(1,i,j

= facl*rhs(2,i,j

= facl*rhs(3,i,j

lhs(3,i,j+l,k)

lhs(4,i,j+l,k)

rhs(l,i,j+l,k)

rhs(2,i,j+l,k)

rhs(3,i,j+l,k)

lhs(2,i,j+2,k)

lhs(3,i,j+2,k)

rhs(l,i,j+2,k)

rhs(2,i,j+2,k)

rhs(3,i,j+2,k)

,k)

,k)

,k)

,k)

,k)
,k)

- lhs(2,i,j+l,k)*lhs(4,i,j

- lhs(2,i,j+l,k)*lhs(5,i,j

- lhs(2,i,j+l,k)*rhs(1,i,j

- lhs(2,i,j+l,k)*rhs(2,i,j

- lhs(2,i,j+l,k)*rhs(3,i,j

- lhs(1,i,j+2,k)*lhs(4,i,j

- lhs(1,i,j+2,k)*lhs(5,i,j

- lhs(1,i,j+2,k)*rhs(1,i,j

- lhs(1,i,j+2,k)*rhs(2,i,j

- lhs(l,i,j+2,k)*rhs(3,i,j

k)

k)

k)
k)

k)

k)

k)
k)

k)

k)

end do

end do

end do

14

Appendix B: Measured computational performance

Optimization:
x-1 baseline
x-2 il, 2-> i+1, i+2
x-3 unroll m-loop
x-4 m first index
x-5 unroll j-loop by 2

a) ranked by size
and by factor

il---lr_lr-_l
[_-q [:::Z I---_ I----I
I---qi[--qi

F--I[_--NN-_)F---Iy-1 baseline
y-2 jl, 2->j+1,j+2
y-3 unroll m-loop
y-4
y-5
y-6
y-7

z-1 baseline
z-2 kl, 2-> k+l, k+2
z-3 unroll m-loop
z-4 m first index
z-5
z-6
z-7

I----31 II II t
mmmm

m first index I----It)l ii i
unroll Hoop by 2 I----]l II II)
natural loop order I II I1 II I
roll up Hoop I II]_r--q

I II IEZZ]N
mr---q_--ir--I
i 11 imr---q
i ii ir--qE:_

unroll Hoop by 2
natural loop order I_--qr----II---II-_l
roll up Hoop [_--]F----II_-ll-_]

b) ranked by factor

mEz_r---7
i----i i---1 i----1EZZE]
--II-qlZZZ IEZ:3
i-_l_r--_r---I
EE:E]Ez_r---q[---q
r---l_l II I
_r---ql II I
E:z]mr---q E_3
F----II II IL__
I II II jF_
I II II I[--_q
I II]1 IC---]
I II II ir---q

I H i_CZC]
i-_11---I[::::] _
CEZ]EZ3CzE3r---q
I-_ll---q[_]l----I
I---II_-q [_] F----q

¢) ranked globally

I II iI
L__JI 11 IL_J I=°
I II II IIZZ 15_

II II ir_qJ-_

Figure 1: Schematic of processor performance presentation; black box signifies maximum

performance within certain range, other gray scales not shown

a) Grid size
16 32 64 80

X-1 8.34 8.7 8.86 8.71
X-2 8.73 9.1 9.25 9.09
x_3r,a_ n:-,e4anam erm
x-4 mm nr_e_n'_'_ nr_
x-5 mm Ii1_ m'ee naLm

Y-1 7.95 8.2 8.3 7.05
Y-2 8.09 8.34 8.42 7.15

Y-4 _/_'_! _1_1 _l_J _1
y-5 =e_ ill libra mm
y_6 n_r_J mFX_lg"t_p_JR'_lr_
y-7 m_eamEreIBl_ il_

Z-1 6.69 6.12 6.04 6.
Z-2 6.71 6.14 6.05 6.01
z-3 e'_"_ m i m

z-5 :_ _ W)2_
z-6 Utah [1_ [!_1_ iil_

b) Grid size
16 32 64 80

x-1 8,34 _B;7;i! _ _q'_'t

x-3 ilB_ nam ham i_!
x-4 mm il_ m_ m_
x_5mL_ mrn__ mma

Y-1 _B_ _ I_ 7:05
Y-2 _ _ / _15
Y-3mi]_litil_ m
Y-4mJv"_mrm IB_ lil_]
Y-5i]_1 mrm mr_ IH_

c) Grid size
16 32 64 80

x-1 _,._ _a _ _:l;
x-2 _m U=_ i B_
X-3ilgl_ _ aam mrs1
x-4 mm i]1_ nara=m_
x_5mL_ =rn_ mca m'tcr=

Y-1 #7_,95J_ _ 7.05
Y-2 _ _ _ 7.15
Y-3m il_ il_ m=
Y-4n_l_ e'_r_ nL_ e'a_
Y-5il_l_ mr_ IH_

Y-7il_] n'=L_eill_ il_]

Z-1 _i6_12i :6.04 ._:6. Z-1 6.69 6.12 6.04 6.
Z-2 _ .6_1_44_6_05 i6_01 Z-2 6.71 6.14 6.05 6.01
z-3 ete'_ i i i z-3 i _!_ _ _
z4 mmmm z4 T,54_._7.0_ 8.9 7.01
z-5 m m z-5 7,05;i/7.1;=7,02
z_6mm r,er_ _er_ ii1_ z-6 il_i_ i_ i_ m
z-7 i]_ iilii] ei'r_ _'ar,_ z-7 mer_ i i i

Figure 2: Performance (Mflop/s) for MIPS R5000 (SGI Indy)

15

a) Grid size
16 32 64 80

X-1 22.41 22.43 17.22 17.27
X-2 22.41 22.43 17.2t 17.26
x_3=i=_ mlmmm
x-4 mm mP3Ji_,n mrm
x_5mm L=mstwBlz F_'_

b) Grid size
16 32 64 80

x-1 lIIli _ _
x-2Ili__
x-3___i
x-4 I_l__I
x-5__i_

c) Grid size
16 32 64 80

x-1 22.41 22.43 17.22 17.27
x-2 _i _ 17.21 17.26

x-3iI__
x-4_I__
X-5 | i _-_1_ 27.29

Y-I____
Y-2I|||
y_3 Ir_LmITIll liBIN lllWI
Y4 _lm _ IEI I_r=
Y-528.7629.2120.4420,63
Y-628.7629.2220.4320.63

Y-I I||I

Y-2I_II
y-3 _m_e_i
Y4 __II
Y-5I||8
Y-6I| 2__
y-7 rm__B

y-1 _ ['_lJ_J__ _
y-2 _ r_J_r_ _ _
y_3 lt_iLm BlWJ _ I I
y_4 t_L_"WJI_'m_ i i
Y-5 _ _ 20.44 20.63
Y-6 _ _ 20.43 20.63
y_7riLq_mrm _ I_!

Z-1 29.31 31A _ 20.96
Z-2 29,3 31A1 _ 20.95
z-3 _ml _]l roB= i_E
z-4 r¢-_ iw= iw_ !_]
Z-5 28,81 29124 20.4 20.51
Z-6 28.8t 29;23 20.4 20.51
z-7 r,,ti_ _,tm_HrM mLm

z-11111__
z-2I_|_
z-3 _l_ii_ I
z-4 _lm=m_ B B
z-5 _II!

z-7 m_ii

Z-1 _ _ _.46 20.96
Z-2 _ | _.4 20.95
z-3 _]=nmB _
z-4 raamn't'B i_ B
Z-5 _ _ 20:4 20.51
Z-6 _ _ 20:4 20.51
z-7 a'm_ _ I_1Bll!m

Figure 3: Performance (Mflop/s) for MIPS R8000 (SGI PowerChallenge)

a) Grid size
16 32 64 80

x-1 62.37 83.37 52.85 45.8
X-2 62.37 _._ _ _82
x_3mR _ rmmU_]
x4 mJ'mB_I B Ilml
x-5 ilBIB il_ tm_ c-_'_

b) Grid size
16 32 64 80

X-1 _ _ 52.85 45.8
X-2 _ | _ 45.82
x-3 r_L_ r_ B B
X-4 _ _ _ 5_,26
x-5 _ _tm i S:_8

Y-163.8269.0552.3642.78
Y-263.6569._ 52.3542.89

Y-5Bil_ li!l liB _1
y.6 IIBl'_l_lII1_ _ _
Y-7m_mr_ III

Y-1 _ _ _ 42.78
Y-2 _ I _ 42.89
Y-3 ____
Y_ _ _ / _:!
Y-5 __I_
Y-6 _ _ I _76
Y-7 ill _ I_ _7

Z-161.7256.8445.0140.37
Z-2 61.5656._ 45.1240.42
Z-3B Itmmmn_
z-4 _ er_m__ _
z-5 m_m mmm_ i
z-6 _lmm_B
z-7 ____

Z-1 _ I_ 4_ 40.37
Z-2 I _ 45.12 40.42
z-3 raa_ _] lI B
z-4 IBi= m¢,BHI _,s
z-5 ilBilBiI_ _ _
z-6 _= I _
z-7 I!'¢_'_Iltl_ _ _;48

Figure 4: Performance (Mflop/s) for MIPS R10000

c) Grid size
16 32 64 80

x-11B_ 45.8
x-2 1 / _ 45_82

X-4 I[l_li_ Ul_l / _B

x-511_B___

Y-1 | / |;_B 42.78
Y-21 / _ 42.89
y-3 IJ'/]tl_ _ / |
Y-4 _ _ _ -49_t
Y-5_IIB_ | _79
Y-6Bl_liimn _
y-7 Ilri_l_J R'_I_ _ _

Z-1 | _ _:i01 40.37
Z-2 j_ _ _,12 40.42
z-3 I_]IB _

Z-5 _ Elm _ 47.26
z-6 _ ii_ _ 47:32
Z-7 _ _ _ 46.48

(SGI Origin2000)

16

a) Grid size
16 32 64 80

X-1 33.94 33.66 33.63 34.22
X-2 34.71 34.35 34.2 35.08
x-31111
x-4 mcP:r_mi]_ Elnlm-_]er_,

Y-2 34.44 34.66 33.22 35.31
Y-3 ____
Y-4 i i _"_ i
Y-5EIW__lr_ [_m _
Y-6EIW IBil _ m_.
Y-7Ilill L=a_ mBl B_

z-1 _52 37.2730.86
Z-2 37.15 36.32 30.43
Z-3 _ _ 31.63
Z-4 38.!6 _ 31.66 31.18
z-5 ._are3EHE _ _
z-6 _i]l_ _illW _IL_ irma
z-7 R_r_ ll]ilWlilWB_

Figure 5:

b) Grid size
16 32 64 80

X-1 33.94 33.66 33;63 _=,22

x-3BB_IB
x-4 __m__m L_ _
x-5 _m EHi W_ ¢'wm

y-l||/l|
Y-2_ _ 33,22
y.3 _ _ _ I_[r_
Y-4____
y_5L'_i L=amD'_ _
y_6 I_UF411_ilI_IL_BI_J'ill_
Y-7II!_ ll_] EH_ B_

Z- 1 _ _ ;_0;86
Z-2 _ _ 30.43

Z-4 _ W _[_ 3_-_!8

z-6 lilil_ liillWRi_ _'r_
z-7 _n_ L_Z_ L_ _

Performance (Mflop/s) for IBM

c) Grid size
16 32 64 80

x-1 _t _ _ _
x-2 _ I_gi _!_ i_

x-4 _r_ _iB I_ -_r_

Y-I____
Y-2 ____
Y-3 ____
Y-4 ____

Z-1 _ _ 30.86
Z-2 _ _ 30.43 _
Z-3 _ _ 31.63
Z-4 _ _ 31.66 31.18
Z-5 _ _ _ 32:97
z-6 _l]_ _il_ -_r_ B
Z-7 _ _ _ _,95

RS6000 (SP-WN)

a) Grid size
16 32 64 80

X-1 17.38 15.09 15.62 15.56
X-2 18.12 15.5 16.12 16.22
x-3 _!_ m_ i]_lW_m
x-_ !_i] _r_ mm IRW
x_5¢-¢_ m_ !_ll] um

Y-1 19.95 16.88 17.19 17.07
Y-2 19.86 16.88 17.08 17.3
Y-3_IW i_ na_ _
Y-4a"a_ a'i_ W_ _']_
Y-5_:-_ i]WI_ IB_ a'_

Z-1 19.33 _ _
Z-2 19.57 _ _
Z-3 EL_Jk-_IL_]l_ _ Ill_l_
Z-4 _ 9.22 7.44 7.29
Z-5 E! 9.31 7.48 7.38
z-6 a'_ luaa Bi_ i]_1_
z-7 _ li_ i]W_ _'zi_

Figure 6: Performance

b) Grid size
16 32 64 80

X-1 _ 15:09 15:62 15;56
X-2 _ _iJS,_ _
x-3_BBB
x-4 IW] B B mrs.
x-5_BBB

Y-1 _ $_ _ _:_:_07
Y-2 _,_ __
Y-3_B_BB
Y-4I_IBB BB
Y-5_!_1__
Y-6_IWBBB
y_7_r___

z-1 i_l_ _ m_l Ill
Z-2 11_1[_ _1 _ I_i
Z-3 _ll_¢J _ _ _
Z-4 _] _ _:T.,44;_9
z-5 _ _ _t _6_
z-6 a'=_ iB_ B_'_ lil_

(Mflop/s) for Intel PentiumPro

c) Grid size
16 32 64 80

x-2 i]lWB_ __
x_3aa_ I_r_ ilia ai_L_
x-4 _ ai_ _ mr_
x_5¢-r_ my_ ait_ aiw_

y_2 II_lE_k,l"_jl'_i]_ IIIF_[E!
y_3 _!_ I1_'1L_"ti]_ _
Y-4FZ'_L_3_i3r_ _ I_IE'_
y_5_]_ _llr_JI_il_i _ill_

y_z_r_ IIV'_ IL_"_ iIWB

z-1 _ _ _g.SS=_g:8

Z-3 _ _ 10.0S _3 _
Z-4 _ 9,22:7.44 7.29
Z-5 IFJ_Jrdl_t 7.48 7.38
z-6 _ i]_ i]_ I[i_
z-;' _¢#J li_ m_ _

200MHz (Whitney)

17

a) Grid size
16 32 64 80

X-1 7.46 6.7 6;85 6.73
X-2 7.46 6,71 _5 6,74

x-3____
x-4 _ __ _r=
x_5_ =Ira _ mrc=

b) Grid size
16 32 64 80

x-1Bml_ _rm _
x-2 IIBB!_ _ _
x-3m_B__l
x-4 mmn EEII m'K'mm'¢¢=
x-5 mm BIB] Brim Rll

c) Grid size
16 32 64 80

x-1 7_461 6.7 6.85 6.73
X-2 'TA6 6.71 6;85 6.74
x-3____
x-4 Dxm I_i m'_ aara
x-5 _BIB]Elm Elm

Y-11 III Ill 6,97
Y-2 i__ ;6.96
Y-3 7i78 8,04 7_3 6.78
Y-4illm mm nma m_
y_5r_mJiB _B
Y-6a'aa IEB mm ram1
Y-7I]ml _ Bi_ ililm

Y-IIII_
Y-2I|I|
Y-3II|_
Y4 |BII
Y-5|II|
Y-6 ____

Y-7___I

Y-1 mnI_ 6.97
Y-2 ||| 6.96
Y-3 _ _ _3 6.78
Y-4liE_I i m_
Y-5BB_BBBt

Y-7i_ll_il

Zl mill 6.5
Z-2 MIlB__ 6.5
Z-3 7,31 6.42 6.52 6.48
z-4 _ I _Ii_
z-5 _i_III
z-6 illm iiml I_m I_1
z-7 iil_ nilr_ Imml IIi_

z-11|I_ z-1 __ 6.5
Z-2 1 _ I _ Z-2 _ _ 7_9_: 6.5
Z-31 | | _ Z-3 7_31 6.42 6.52 6.48

z-4 | | I I z-4 1 a _7; _7.e5
z-5 111 _ z-5 _ -_:?___r'?,481i7.59
z-6 BIm IBml t'_ II_l z-6 _III
z-7___I z-7 I___

Figure 7: Performance (Mflop/s) for DEC Alpha EV4 (Cray T3D)

a) Grid size
16 32 64 80

X-1 51_79 52,5 _31 54.87

X-2 5t:_ 52_ _ _,88
X-3 50.8 5t,89 53_ _i15
x-4 mu =ram a'ma lil_!
x_5r_m mm mr_ mr_

Y-1 37.021 I
Y-2:37_! I I
Y-3 _._ _I_
¥-4__I_

Y-6 36._ _.96 32.66 35.16
Y-7 37.68 36._ 32.11 35.83

Z-1 _Lt_._ _(_ 20.72 21.12
z-2 _ _ 20.75 21.16

z-3 _ _i__
z-4 _lImmBl_
z-5 '.ramI_B mm BI_
z-6 _ _ _ _1_
z-7 j nl__

b) Grid size
16 32 64 80

x-1 __iI_
x-2 __lIB_
x-3 __1_
x-4 _]_E lime i_l
x-5 B mRr_mm E_]

Y-1|III
Y-2I|I|
Y-3_III

Y-5 ____
Y-6 ____

Y-711 _

z-III__
Z-2lk'li_ III 1_I _
Z-3III|
z-4 |III
z5 IIII
z-6 IIII
z-7r,mII_

Figure 8: Performance

c) Grid size
16 32 64 80

x-1 gig/
x-2 Ill/
x-31il/
x-4 _]_ I_ Iml

Y-1|II|
Y-2III_
Y-3|II|
Y-4 t'_l_$I _i_l_ l'_1_ _
Y-5 | I_] _ll_ _il_'_
Y-6 __l_ _
y-7 |lRl| __

Z-1 1 24.6:1 20.72 21.12
Z-2 _ _ 20.75 21.16
Z-3 _ _&_,] 21.35 21,43
z-4 IDle
z-5/i__
z-6/___
Z-7 _ _ _ 24.62

(Mflop/s) for DEC Alpha EV5 (Cray T3E)

18

a) Grid size
16 32 64 80

x-1 31.87 24.52 24.95 25.05
X-2 33.61 25;28 25.73 25.83
X-3 32. 24.54 25.05 25.16
x-4 ¢'¢_ IEIIE Bile l_lW
x-5 DilB I_1 m_'t=a'mr_

Y-1 28.18 _ F_[_Jr_ 22.3
Y-2 28.83 _ _ 22.37
Y-3 28.7 _ _ 21.88

Y-4 _ 24.09 23.74
Y-5IElm l_i] I_! &qr¢'_
Y-6mEre_'_ a'mr_a'ma

Z-1 27.95 _ll_ II[_l't_ Ill_lkl_
Z-2 28:72 _ _
Z-3 27.75 _ _
Z-4 27.49 | i6_3 15.29
Z-5 28.78 _ _ _
z-8 mlE] IJm iW_] i]_m
z-z _ 19.11155 15.5

b) Grid size
16 32 64 80

x-1 _ 24.52 24.95 25,05
X-2 _ 25.28 25_ 25.83
X-3 _ 24.54 25.05 25.118

x-5 Lqa_ _ii i _

Y-1 _ _ _ 22;3!
Y-2 _ _ _ 22.3Z
Y-3 _ _ _ 21.86
y_4 I_"FJL__ _ _
y_5mmBBB
y 6¢m_BBB

c) Grid size
16 32 64 80

x-1 _11_ iil B
x-2 i_I_BBB
x-31____
x-4 _r_ _ Bi]l_ _ili_

Y-1 ____
y_2F,ITJr_._ _ _
Y-3____
y_4 [_IL_. _ _ I_l
y_5 l_L_l_l_ _ _
y_6 k'LqlL_,_ _ _
Y-Z _!_ _11/_

Z-1 ____ Z-1 __ 19.89 19:73
Z-2 P'J'_lk__ _ _ Z-2 _ _ 19,74 19:75
z-3 _ B / B z-3 B _ 19,29 19.3
Z-4 _ _l $_ 15.29 Z-4 _ _ 16.23 15.29
Z-5 _ _ _ 16:1_ Z-5 _ _ 17.1 16.14
Z-6 _ _ _ _ Z-6 _ _ i9:84 19.86
Z-7 l_r'_l_l 15.5 15.5 z-7 _ 19.11 15.5 15.5

Figure 9: Performance (Mflop/s) for Sun UltraSparc (Berkeley NOW)

19

Appendix C: Simulated cache performance

Grid size

16 32 64 80

X-1 6.78 6.12 5.83 5.77

×4mmmm_l_!

y___=_=_ 9.89
Y-46.636.06__
Y-56.636.06Im_
Y-66,636.06__
_-76.638.066.88em

Z_lemmmm
Z-4 15:6 16.9 16.8 16.8

Z-5 15.6 16.9 16.8 16.8

zT_mml__

Figure 10: Cache misses (%), MIPS R5000

Grid size

16 32 64 80

x-1m= I_ mt 0.369
x-4mml_mm_

Y-4____
_-____
Y-6____
Y-7____

z-lm_m_
z_4mm_m
z-_mBIB
z_6_im=mB
z-7_mmm

Figure 11: Cache misses (%), MIPS R8000

Figure

R10000

Grid size

16 32 64 80

X-ll__=mm 1.45
x-4m= 6.229IBmIll
x-_mm0,229mmIEI

y-1_ll_l__
y-4_0.229 1.461.44
Y-5_0.2291.461.44
Y-6IBm0.229146 144
Y-7I_ 0.229146 1

z-4_0.229 1.461.44
z-5_0.229 1.461.44
z-6ImEI! 148 144
z-71mlm1146 144

12: Cache misses (%), MIPS

Grid size

16 32 64 80

x-1 0.638 0.7_ 0.7_5

x-4___=_
x_mm__wm

y_1_lU_l__

Y-4 0.587 ___

y-5 _["___

Y-6 IILI_II__ 0.754 0.784

Y-7 _ _ 0.754 0.784

Z_l__iel
z-4__ 2.122.I1
z-_i_l 2.122.11
z-60.587_ _
Z-70.587I_ I_Jj

Figure 13: Cache misses (%), IBM RS6000

20

Grid size

16 32 64 80

x-1 3.98 6.12 5.83 5.77

x-4em memllml
x-5e__emlml

Y-1Eimmlmi
Y-4 3.72 6.06 5.8 5.75

Y-5 3.72 6.06 5.8 5.75

Y-6 3.73 6.06 5.8 5.75

Y-7 3.73 6.06 5.8 5.75

Z_lemmlme_
Z-4 n 6.06 16.8 16.8

Z-5 n 6.06 16.8 16.8

z_6 3.74 6.06 m_el_

z_7 3.74 6.06 m_

Figure 14: Cache misses (%), PentiumPro

Grid size

16 32 64 80

×_1ramr_ me em
x-4m__ln
X-5 7.05 6.53 6.31 6.26

Y-1 10.6 ___

Y-4_ 10.3 14. 15.2

Y-5_ 10.4 14. 15.2

y-6 m _L_ _ _1_

¥71_l_eme_

Z_l_ e_ll_ I_
Z-4 17.6 17.3 17.2 17.2

Z-5 17.6 17.4 17.2 17.2

z_6mmBem
z_7mB__m

Figure 15: Cache misses (%), DEC EV4

Grid size

16 32 64 80

x-1 6.78 6.12 5.83 5.77

x-4mmemlmi
x-5m_mlml

y_lnm_lWllE!
Y-4 6.63 6.06 _ 5.75

Y-5 6.63 6.06 _ 5.75

Y-6 6.63 6.06 5.89 5.75

Y-7 6.63 6.06 5.91 5.75

Z-llme_lmn m
Z-4 6.63 16.9 16.8 16.8

Z-5 6.63 16.9 16.8 16.8

Z-6 6.63 _m

Z-7 6.63 __I_

Figure 16: Cache misses (%), DEC EV5

Grid size

16 32 64 80

X-l_ 3.07__
X-4ImEIImml
x 51NEINll_

¥_lUnmeB
Y-4 _ 3.1 2.99 2.98

Y-5_ 3.1 2,99 2.98

Y-6 _ 3.09 @_ 2:96

Y-7_ 3.1 2.99 2.98

z-1imlme_lB!
Z-4 Elm 4.11 6.89 8.42

z-5_ 4.11 6.89 8.42

z-6Iml__l_
z7INIEll_I_

Figure 17: Cache misses (%), UltraSparc

21

